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We demonstrate a different pulse compression technique based on exact solutions to the nonlinear
Schrödinger-type equation interacting with a source, variable dispersion, variable Kerr nonlinearity, and vari-
able gain or loss. We show that this model is appropriate for the pulse propagation in asymmetric twin-core
fibers. The chirped pulses are compressed due to the nonlinearity as well as dispersion management as also due
to the space dependence of the gain coefficient. We also obtain singular solitary wave solutions, pertaining to
extreme increase of the amplitude due to self-focusing.
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In recent years, the study of nonlinear fiber optics has
attracted much attention and has played an important role
toward the development of several technologiesf1g. Among
them, the development of optical solitons is considered to be
one of the ten hottest technologies of the 21st centuryf2g. In
the case of exact soliton pulse propagation, the pulse evolu-
tion is governed by nonlinear Schrödinger equationsNLSEd.
In realistic systems this equation is suitably modified to take
into account loss or gain or other medium effects. In recent
times, much effort has been devoted to optical pulse com-
pression techniques because of their practical utility. Most of
these techniques rely on chirping obtained either by self-
phase modulation in the normal dispersion regime or by
combining phase modulation with amplificationf3,4g. Soli-
ton effects can also be utilized for compression where the
problem of residual pedestals can be reduced through appro-
priate control of intensity, which affects the nonlinearity.
However, this procedure has the drawback of waste of en-
ergyf5g. Adiabatic soliton compression, through the decrease
of dispersion along the length of the fiber, provides a better
pulse qualityf6g, albeit in a less rapid manner. Interested
readers are referred to Johnsonet al. f7g and Fisheret al. f8g
for more information about pulse compressors. Exact solu-
tions have played crucial roles in demonstrating the above
pulse compression techniques. The fact that NLSE or modi-
fications of the same is known to possess soliton solutions
has come in handy in studying the mechanism of pulse com-
pression in the above models. All the aforementioned meth-
ods for pulse compression are restricted to pulse propagation
through single core fibers. Although it is easier to fabricate
twin-core fibers with some built-in asymmetry, the nonlinear
pulse compression in these types of couplers has not received
much attention in the literature. The existence of the solitary
wave solutions in twin-core fiberssTCFsd has been reported
in Refs. f9,10g. Soliton solutions, when the nonlinearity for
one component can be neglected, has been studied perturba-
tively f11g. In this context, the relevant equation is NLSE
driven by a source, originating from the coupling term. Soli-
ton bound states in the TCFs have also been reportedf12g.

In this paper we delineate the nonlinear pulse compres-
sion based on exact solitary wave solutions of NLSE inter-
acting with a source, that is appropriate for the pulse propa-
gation in asymmetric TCF. Apart from using the exact
solutions of NLSE with a source, recently obtained by two of
the present authorsf13g, we take recourse to the recent work
of Kruglov et al. f14g in the context of NLSE with variable
dispersion, variable Kerr nonlinearity, and variable gain or
loss.

We first outline below the origin of NLSE with a source,
for pulse propagation through asymmetric TCF, with dissipa-
tion f11g. The equations for the envelopes of the pulses that
propagate through the TCF are

i]zc1 + ]ttc1 + 2uc1u2c1 + igc1 + Ga12c2

3expf− isk̂z− v̂tdg = 0, s1d

is]zc2 − b1]tc2d + b2]ttc2 + 2uc2u2c2

+
a21

G
c1 expfisk̂z− v̂tdg = 0. s2d

Herec1 andc2 are the field envelopes. The coordinatesz and
t in Eqs.s1d ands2d are written in appropriate unitsf15g. In
writing Eqs.s1d ands2d, we have considered constancy of the
distributed coefficients. In any real soliton transmission sys-
tem there exists dissipation due to fiber losses. This has been
incorporated in Eq.s1d, by adding anigc1 term. As the sec-
ond core is a passive one, it is not essential to consider the
losses. Since the fibers are not identical, the coupling is not
symmetric, i.e.,a12Þa21. G=sg1/g2d1/2 is the ratio of the
nonlinearity strengths in the two fibers, wheref16,17g

gi =
n2vi

cAi
eff . s3d

Ai
eff is the effective core area,n2 is the Kerr coefficient,c is

the speed of light, andvi is the carrier frequency in each
fiber. Under the assumption that the interaction term in Eq.
s1d is much larger than the interaction term in Eq.s2d, the last
term in Eq.s2d can be dropped. This implies that Eq.s2d is
decoupled from Eq.s1d; c2 only enters as a driving term in
Eq. s1d, while there is no back action. We further assume that*Electronic address: prasanta@prl.ernet.in
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the pulses described by Eq.s2d are in the normal dispersion
regime, in which case there is no modulational instability
and stable linear dispersive waves can propagate in the sec-
ond core. We are interested in the small amplitude modes of
Eq. s2d, when the pulses are just linear waves. In this case the
term arising from the Kerr nonlinearity can be dropped. Thus
Eqs.s1d ands2d can be written as damped NLSE coupled to
an external traveling wave field.

In the realistic situation in a fiber, there will always be
some nonuniformity due to two factors. It may arise from a
variation in the lattice parameters of the fiber medium, so
that the distance between two neighboring atoms is not con-
stant throughout the fiber. It may also arise due to the varia-
tion of the fiber geometry, e.g., diameter fluctuation. These
nonuniformities influence various effects such as losssor
gaind, phase modulation, etc. These effects can be modeled
by making dispersion, gain, and other space dependent pa-
rameters. In this case, Eq.s1d modifies to

icz −
bszd

2
ctt + gszducu2c = i

gszd
2

c + hszdeiFst,zd. s4d

The above equation is deliberately cast into a form similar
to that of Ref. f14g, where the solutions of this equation
without a source have been recently analyzed. The phaseF
in the source term contains the phase part ofc2 whose am-
plitude part is contained inh. Equation s4d describes the
amplification or attenuationffor negative gszdg of pulses
propagating in a single mode nonlinear fiber, wherecst ,zd is
the complex envelope of the electric field in a co-moving
frame.t is the retarded time,bszd is the group velocity dis-
persionsGVDd parameter,gszd is the nonlinearity parameter,
andgszd is the distributed gain function.

In recent times, various forms of inhomogeneities have
been discussed in the literature. A nonlinear compression of
chirped solitary waves has been discussed by Mooresf18g
and Shivkumarf19g. A deformed NLSE has been studied by
Brustev et al. in Ref. f20g, wherein the Lax pair for the
system has been presented. The soliton solution and the pos-
sibility of amplification of soliton pulses using a rapidly in-
creasing distributed amplification with scale lengths compa-
rable to the characteristic dispersion length has been reported
by Quiroga-Teixeiroet al. f21g. For the propagation of two
orthogonally polarized optical fields in a nonuniform fiber
media, the coupled inhomogeneous NLSE, under suitable
variable transformation, has been reduced to the coupled
NLSE f22g. Similarity reduction for variable-coefficient
coupled NLSE has been studied in Ref.f23g. Numerically it
was shown that, in the case where the gain due to the non-
linearity and the linear dispersion balance each other, equi-
librium solitons are formedf24g. As mentioned earlier,
Kruglov et al. have reported exact self-similar solutions of
Eq. s4d without a source, characterized by a linear chirp and
demonstrated pulse compression taking into account nonlin-
ear soliton effectsf14,18,25g. More recently, an important
technology referred to as dispersion managementsDMd has
been developed by the researchersf2,26g. Serkin and Hase-
gawa have formulated the effect of varying dispersion with
external harmonic oscillator potential on the soliton dynam-

ics and have explained the concept of amplification of soliton
f27g. Motivated by these works, we have analyzed solutions
of Eq. s4d for pulse compression that may find application,
particularly in the soliton based communication linksf1g via
asymmetric TCF. We show that it is possible to control the
compression of thec1 pulse in the TCF throughc2.

For finding solutions of Eq.s4d, one writes the complex
function csz,td as

csz,td = Psz,tdexpfiFsz,tdg, s5d

whereP andF are real functions ofz andt, where the phase
has the following quadratic form:

Fsz,td = aszd + cszdst − tcd2. s6d

Then Eq.s4d yields a self-similar form of the amplitude

Psz,td =
1

Î1 − c0Rszd
QS t − tc

1 − c0RszdDexpS1

2
SszdD , s7d

wheretc is the center of the pulse, and the functionsaszd,
cszd, Rszd, andSszd in the solutions given by Eqs.s6d ands7d
are

aszd = a0 −
l

2
E

0

z bsz8ddz8

f1 − c0Rsz8dg2 , s8d

cszd =
c0

1 − c0Rszd
, Rszd = 2E

0

z

bsz8ddz8, s9d

Sszd =E
0

z

gsz8ddz8, s10d

where a0, l, and c0 are the integration constants. For the
existence of the self-similar solutions, the following relation-
ship between gain profile and distributed parameters should
be maintained:rszd=bszd /gszd,

gszd =
1

rszd
d

dz
rszd +

2c0bszd
1 − c0Rszd

, s11d

and the source should be of the form

h =
bszd

2f1 − c0Rszdg3/2«. s12d

Here« is a constant characterizing the strength of the source.
In the context of TCF it should be noted that, keeping the
nonlinear term forc2 with appropriate distributed coeffi-
cients, one can obtain a phaseF showing a linear chirp as
required above. The spatial profile of the source can originate
from the appropriate combinations ofc2szd and distributedG
anda12.

The functionQsTd satisfies

Q9 − lQ + 2kQ3 − « = 0, s13d

where the prime indicates the derivative with respect toT,
whereT=st−tcd / f1−c0Rszdg andk=−gs0d /bs0d.

As shown in Ref.f13g, the solutions of the above equation
can be obtained through a fractional transform,
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QsTd =
A + Bf2sTd
1 + Df2sTd

, s14d

that connects the solutions of the NLSE with a source, to an
elliptic equation of the typef9±af±lf3=0. As is well
known, f can be taken as any of the Jacobi elliptic functions
with an appropriate modulus parameter, e.g., cnsT,md,
dnsT,md, and snsT,md, with amplitude and width, appropri-
ately depending onm. Using the limiting conditions of cnoi-
dal functions: cn2sT,0d=cos2sTd, and cn2sT,1d=sech2sTd;
dn2sT,0d=1; sn2sT,0d=sin2sTd, and sn2sT,1d=tanh2sTd, one
can obtain both localized and trigonometric solutions. We list
below a few interesting solutions, trigonometric, singular,
and nonsingular hyperbolic ones. The singular solution indi-
cates extreme increase in intensity due to self-focusing. Be-
low, we give specific solutions to illustrate the compression
technique. The solutions presented below are nonperturba-
tive in the sense that they cannot be obtained through the
perturbative treatment of the soliton or periodic solutions of
the equations without the source. Recognizing the fact that
without a source the equation describes the pulse propaga-
tion in a single-core optical fiber, it is clear that the presence
of a second core significantly affects the nature of the pulses
that can propagate in a twin-core fiber. We refer the inter-
ested readers to Ref.f13g for more details of the solutions.

CasesId: Trigonometric solution. ForA=0, l=4, andm
=0; we find that

QsTd = s«/2d
cos2sTd

1 − s2/3dcos2sTd
, s15d

subject to the condition on the strength of the source with the
strength of the nonlinearity:«=Îs64/27kd, with k.0.

CasesII d: Hyperbolic solution. Fork=−uku, B=0, l=−4,
andm=1; we find that

QsTd = s3/4d«
1

1 − s3/2dsech2sTd
, s16d

subject to the condition«=Îs64/27ukud. This is a singular
solution. The singularity here corresponds to an extreme in-
crease of the field amplitude due to self-focusing. For a long-
haul communication network, using nanosecond pulses, the
singularity of this pulse profile may correspond to the beam
power exceeding the material breakdown due to self-
focusing, as is known for the other nonlinear systems
f28–30g. However, this catastrophic nonlinear response of
the medium with the femtosecond pulses is not in conformity
with the experimental observationf31g.

One can also obtain pure cnoidal solutions, for different
parameter values. We find that forB=0, one always gets
singular solutions. In the casem=1 and A,BÞ0 one can
obtain exact solutions including nonsingular dark solitons. At
this point it is worth mentioning that no solutions are ob-
tained form=0; B=0 and form=1; A=0.

We now elucidate the compression problem of the pulse
in a dispersion decreasing optical fiber. For the purpose of
comparison with Ref.f14g, we assume that the GVD and the
nonlinearity are distributed according to the following rela-
tions:

bszd = b0 exps− szd, gszd = g0 expsazd, s17d

whereb0ø0, g0ù0, andsÞ0, in which case the gain is

gszd = − a −
ssn − 1d

n − 1 + exps− szd
, s18d

wheren=s /2c0b0. We explicate the nonlinear compression
using the trigonometric solution

Psz,td = Aszd
cos2fst − tcd/Wszdg

1 − s2/3dcos2fst − tcd/Wszdg
, s19d

where

Aszd = s«/2d
Îub0u
Îug0u

expS1

2
ss − adzD ,

Wszd = 1/n−1fn − 1 + exps− szdg.

We now consider an illustrative case wheren=1=g0
= ub0u and c0,0 so that s.0. We take, s=2 and
gszd=−a ,a.0, implying the gain is negative. The width of
the solutions presented here tends to zero whenz→`.

Figure 1 shows that for the constant loss this solution can
be compressed to any required degree asz→`, while main-
taining their respective original shapes, as was seen for the
NLSE without source. The same can also be achieved for the
dark solitons. The underlying cause of pulse compression is
similar to the one in NLSE. In the presence of a linear chirp,
the distributed coefficients can be absorbed in an appropriate
independent variable, if the solutions are assumed to be self-
similar in nature. The presence of damping term affects the
amplitude of the solution without altering the basic nature of
the self-similar solution.

In conclusion, we have demonstrated a different pulse
compression technique based on exact solutions to the non-

FIG. 1. Contour plot depicting the intensity of the nonlinearly
compressed trigonometric solution given by Eq.s15d sin arbitrary
unitsd.
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linear Schrödinger-type equation interacting with a source,
variable dispersion, variable Kerr nonlinearity, and variable
gain or loss. A physical derivation of this system is described
by including dissipation in one of the coupled equations that
are appropriate for the description of pulse propagationvia
asymmetric TCF. Realizing all-optical switching processing
in the present model will be of a great interest. We hope that
these solutions can be launched in long-haul telecommunica-

tion networks for achieving pulse compression. We should
also like to point out that, in the presence of appropriate
nonlinearity, our results may find application in twin-core
photonic crystal fibersf32g.

K.P. wishes to thank DST, CSIR, and UGC for financial
support in the form of projects.
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